首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36682篇
  免费   2049篇
  国内免费   1322篇
电工技术   848篇
综合类   753篇
化学工业   11720篇
金属工艺   2971篇
机械仪表   1750篇
建筑科学   1258篇
矿业工程   367篇
能源动力   3411篇
轻工业   3099篇
水利工程   71篇
石油天然气   863篇
武器工业   139篇
无线电   2898篇
一般工业技术   7093篇
冶金工业   924篇
原子能技术   1072篇
自动化技术   816篇
  2024年   40篇
  2023年   686篇
  2022年   859篇
  2021年   1173篇
  2020年   1103篇
  2019年   1110篇
  2018年   1082篇
  2017年   1261篇
  2016年   1285篇
  2015年   1288篇
  2014年   1996篇
  2013年   2817篇
  2012年   2071篇
  2011年   3224篇
  2010年   2173篇
  2009年   2284篇
  2008年   2187篇
  2007年   1985篇
  2006年   1688篇
  2005年   1408篇
  2004年   1250篇
  2003年   1113篇
  2002年   930篇
  2001年   656篇
  2000年   580篇
  1999年   548篇
  1998年   499篇
  1997年   431篇
  1996年   409篇
  1995年   335篇
  1994年   311篇
  1993年   196篇
  1992年   206篇
  1991年   158篇
  1990年   121篇
  1989年   100篇
  1988年   81篇
  1987年   62篇
  1986年   39篇
  1985年   64篇
  1984年   68篇
  1983年   51篇
  1982年   57篇
  1981年   23篇
  1980年   13篇
  1978年   4篇
  1976年   9篇
  1975年   5篇
  1974年   3篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
81.
The actual need for hybrid organic–inorganic polysiloxanes is very high due to their importance in optoelectronic applications, especially for the preparation of anti- and low-reflection layers, photopatterned overcoats, flexible hard coats, and glass and metal coatings. However, such three-dimensional hybrid polysiloxanes have very often a limited shelf life and aged very rapidly. Consequently, this type of polymer may require to be stored at cold temperatures and needs to be dilute in organic solvent to a very low solid content, which are unprofitable conditions for commercialization purposes. Therefore, there is an urgent demand to prepare three-dimensional polysiloxanes, which are more resistant toward aging processes. Herein, a new hybrid three-dimensional polysiloxane has been designed and synthesized from three different silane precursors using the sol–gel technology, and characterized using gel permeation chromatography, 1H, 13C, and 29Si nuclear magnetic resonance and MS spectroscopies. One-fourth of the silanol groups present in the polysiloxane have been protected with chlorotrimethylsilane. The refractive index of the silicon wafer coated with the new polysiloxane was found to be 1.53, which is higher compare to traditional values. Importantly, the new protected three-dimensional polysiloxane did not age after being stored at T = 40°C for 3 weeks.  相似文献   
82.
We report the mechanism involved in sol-gel auto-combustion synthesis of Ba–Sr-hexaferrite (Ba1-xSrxFe12O19; x = 0, 0.25, 0.5, 0.75 and 1, BSFO) ceramic powders through the analysis of the phases evolved during annealing of the as-synthesized powders, along with their structure and morphological studies. The XRD patterns of the as-synthesized samples indicate the formation of barium/strontium monoferrite ((Ba/Sr)Fe2O4) and maghemite (γ-Fe2O3) phases along with a minute amount of hematite (α-Fe2O3) phase. Annealing of these samples facilitates formation of BSFO phase through the solid state reaction between BaFe2O4 and γ-Fe2O3 phase. Interestingly, after annealing the samples with x = 0, 0.5 and 1, at 1000 °C for 2 h, we observed that phase pure Ba–Sr hexaferrite structure forms, but for samples with x = 0.25 and 0.75, high amount of hematite (α-Fe2O3) phase is observed, especially for x = 0.75. The reason associated with this could be the large difference between the ionic radii of Ba2+ and Sr2+ ions occupying the oxygen site. Furthermore, our study on annealing dependent phase evolution confirms that, this difference in ionic radii forbids the formation of a single phase Ba–Sr hexaferrite. The growth of clear hexagonal-shaped plate-like particles with varied particle sizes was observed for all the samples. The particle size variation may be due to the influence of the ionic radii difference on the sinterability of the samples. Our study provides a better understanding of synthesis mechanism of Ba–Sr hexaferrite samples.  相似文献   
83.
Chemical stability of phosphors is critical to the efficiency and lifetime of the white light-emitting diodes. Therefore, many strategies have been adopted to improve the stability of phosphors. However, it is still lack of report on the improvement of thermal stability and hydrolysis resistance of phosphors by a single layer coating. Due to the high transmittance and high chemical inertness of graphene, it was coated on the surface of Sr2Si5N8:Eu2+ phosphor by chemical vapor deposition, aiming to improve its thermal stability and hydrolysis resistance. The chemical composition and microstructure of the coating were characterized and analyzed. A nanoscale carbon layer was attached on the surface of Sr2Si5N8:Eu2+ phosphor particles in an amorphous state. In coated Sr2Si5N8:Eu2+ phosphor, the oxidation degree of Eu2+ to Eu3+ was significantly suppressed. At the same time, the surface of Sr2Si5N8:Eu2+ particle turned from hydrophilic to hydrophobic after carbon coating, and consequently the hydrolysis resistance of Sr2Si5N8:Eu2+ phosphor was greatly improved. After tests at 85 °C and 85% humidity for 200 h, the carbon coated Sr2Si5N8:Eu2+ phosphor still maintained about 95% of its initial luminous intensity as compared with 35% of the uncoated. By observing the in-situ microstructure evolution of coated phosphor in air-water vapor environment, remained presence of the carbon layer even at 500 °C explained the excellent chemical stability of carbon coated Sr2Si5N8:Eu2+ phosphor in complex environment. These results indicate that a nanoscale carbon layer can be used to provide superior thermal stability and hydrolysis resistance of (oxy) nitrides phosphors.  相似文献   
84.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
85.
《Ceramics International》2022,48(7):9527-9533
In this work, a magnetodielectric coupling observed in barium titanate–cobalt ferrite composites synthesized using high-energy ball milling assisted via a thermal treatment is discussed. Vibrating sample magnetometry and dielectric spectroscopy showed that multiferroic composites possess both ferromagnetic and dielectric behaviors inherited from the parent ferromagnetic cobalt ferrite and ferroelectric barium titanate phases. The magnetocapacitance (up to 35%) recorded for x = 0.3, (1-x)BaTiO3–xCoFe2O4, can be attributed to the spin-dependent filtering mechanism. The composite with the aforementioned composition exhibited a homogeneous matrix–particle composite microstructure, which was achieved via high-energy ball milling during the mixing stage.  相似文献   
86.
《Ceramics International》2022,48(2):1451-1483
Metal/ceramic composites are in high demand in several industries because of their superior thermo-mechanical properties. Among various composite types, the interpenetrating phase composites (IPCs) with percolating metallic and ceramic phases offer manifold benefits, such as a good combination of strength, toughness, and stiffness, very good thermal properties, excellent wear resistance, as well as the flexibility of microstructure and processing route selection, etc. The fabrication of metal/ceramic IPCs typically involves two steps - i) processing of an open porous ceramic body, and ii) infiltration of metallic melt in the pores to fabricate the IPC. Although significant progress has been made in recent years for developing both porous ceramics and melt infiltration methods, to the best of the knowledge of the authors, no review article summarizing all the aspects of processing and properties of IPCs has been published till date. This review article is aimed at filling this gap. Starting with a brief introduction about the current status and applications of IPCs, the various processing routes for fabricating open porous ceramic preforms and melt infiltration techniques have been discussed. Subsequently, the data available for various important physical, mechanical, and thermal properties for IPCs have been critically analyzed to thoroughly understand their dependence on various structural and processing parameters. To compare the properties of IPCs with other relevant materials, seven different Ashby material property maps have been used, and the domains for IPCs have been created in them. For each map, the concept of material indices has been employed to critically discuss how IPCs perform in relation to other material classes for various optimum design conditions. Finally, a detailed future outlook for further research on IPCs has been provided.  相似文献   
87.
《Ceramics International》2022,48(4):5229-5238
The uneven growth of thermally grown oxides (TGOs) in thermal barrier coating systems is an important cause of cracking failure at the coating interface in high-temperature environments. The doping of rare earth elements in the bonding layer can effectively inhibit the formation of spinel oxides in the TGO and improve the high-temperature oxidation resistance of the coating. However, a single rare earth element has a limited effect on inhibiting TGO failure. In this study, a NiCoCrAlYHf coating was prepared using a supersonic flame spraying (HVOF) technique. The effects of HfO2 doping on the high-temperature oxidation behaviour of the coatings and diffusion behaviour of metallic elements in the coatings were investigated at 1100 °C. The results showed that the nano-sized HfO2 filled the pores between the powder particles and improved the hardness of the coating. During the high-temperature oxidation process, the oxides formed by Hf and Y had a large size and low solubility, which effectively blocked the diffusion of Al. This slowed the generation of spinel oxides, effectively inhibited the growth of the TGO, it inhibits the initiation and propagation of cracks within the coating, reduces damage to the coating from tensile and compressive stresses at the interface, and improved the high-temperature oxidation resistance of the coating.  相似文献   
88.
《Ceramics International》2022,48(12):16505-16515
Boron carbide has a wide solubility range owing to the substitution of B and C atoms in the crystal. In this study, boron carbides with different stoichiometric ratios were prepared using a hot-pressing sintering method, and the influences of the B/C atomic ratio on the microstructures and properties were explored in detail. X-ray diffraction analysis showed that excessive B atoms caused lattice expansion. Raman spectroscopy analysis showed disordered substitution of B atoms in the chains and icosahedra. Analysis of the densification process and microstructure evolution revealed that the addition of B promoted densification, and more stacking faults and twins occurred in B-rich boron carbide, and result in the densification mechanism gradually changes from atomic diffusion mechanism driven by thermal energy to plastic deformation mechanism dominated by the proliferation of dislocation and substructures. The introduction of chemical composition changes by dissolving excessive B into boron carbide further affected the microstructure and consequently the mechanical properties. The Vickers hardness, modulus, and sound velocity all decreased with the increase in B content. Moreover, the fracture toughness improved with increased B content. The flexural strength of the samples was optimised at the B/C stoichiometric ratio of 6.1.  相似文献   
89.
《Ceramics International》2022,48(21):31265-31272
Bismuth layer structured Na0.5Bi4.5Ti4O15 (NBT) ferroelectric is one of the most promising materials for potential applications at high temperature. However, it is challenged to achieve a balance between high Curie temperature piezoelectric coefficient and excellent thermal stability for NBT piezoceramics. Here, through chemical modification at the A site of NBT with Ca2+, novel (Na0.5Bi0.5)1-xCaxBi4Ti4O15 piezoceramics with excellent properties fabricated by solid state reaction were studied. After doping of Ca2+, the Curie temperature TC increased from 648 °C to 662 °C while the piezoelectric coefficient d33 increased from 14 pC/N to 22 pC/N which can be attributed to the intrinsic contribution of TiO6 octahedral lattice distortion (tilting and rotation) and the extrinsic contribution of the increased density of domain walls. The composition of (Na0.5Bi0.5)0.95Ca0.05Bi4Ti4O15 ceramics with x = 0.05 has the optimal performance with high TC of 655 °C, large d33 of 22 pC/N, high electrical resistivity ρ close to 107 Ω cm at 500 °C and especially excellent thermal stability of d33 only about 5% reduction after being annealed at 625 °C. The work effectively reveals the great potential of CNBT-5 ceramics for high-temperature piezoelectric applications.  相似文献   
90.
《Ceramics International》2022,48(11):14987-14992
The ceramic compound CaMoO4 is synthesized via a solid-state reaction technique. Rietveld refinement studies were done on the powder X-ray diffraction data of CaMoO4 and revealed that the compound is crystallized in the tetragonal Scheelite structure with I41/a space group. The differential scanning calorimetry (DSC) studies on CaMoO4 divulged an anomaly around 440 °C. This anomaly is further probed using the temperature-dependent Raman and dielectric spectroscopic measurements and are corroborating with the results obtained from DSC. A detailed investigation on the temperature-dependent Raman spectroscopic data revealed that the A1g mode of CaMoO4 showed a soft phonon behavior up to the phase transition temperature. It is observed that the A1g mode displayed phonon hardening behavior with further increasing the temperature. The anomaly is attributed to an isostructural phase transition (IPT), a rarely observed phenomenon in the compounds with Scheelite structure. The IPT in CaMoO4 is elucidated with a phonon softening mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号